Gain in stochastic resonance: precise numerics versus linear response theory beyond the two-mode approximation.

نویسندگان

  • Jesús Casado-Pascual
  • Claus Denk
  • José Gómez-Ordóñez
  • Manuel Morillo
  • Peter Hänggi
چکیده

In the context of the phenomenon of stochastic resonance (SR), we study the correlation function, the signal-to-noise ratio (SNR), and the ratio of output over input SNR, i.e., the gain, which is associated to the nonlinear response of a bistable system driven by time-periodic forces and white Gaussian noise. These quantifiers for SR are evaluated using the techniques of linear response theory (LRT) beyond the usually employed two-mode approximation scheme. We analytically demonstrate within such an extended LRT description that the gain can indeed not exceed unity. We implement an efficient algorithm, based on work by Greenside and Helfand (detailed in the Appendix), to integrate the driven Langevin equation over a wide range of parameter values. The predictions of LRT are carefully tested against the results obtained from numerical solutions of the corresponding Langevin equation over a wide range of parameter values. We further present an accurate procedure to evaluate the distinct contributions of the coherent and incoherent parts of the correlation function to the SNR and the gain. As a main result we show for subthreshold driving that both the correlation function and the SNR can deviate substantially from the predictions of LRT and yet the gain can be either larger or smaller than unity. In particular, we find that the gain can exceed unity in the strongly nonlinear regime which is characterized by weak noise and very slow multifrequency subthreshold input signals with a small duty cycle. This latter result is in agreement with recent analog simulation results by Gingl et al. [ICNF 2001, edited by G. Bosman (World Scientific, Singapore, 2002), pp. 545-548; Fluct. Noise Lett. 1, L181 (2001)].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear stochastic resonance: the saga of anomalous output-input gain

We reconsider stochastic resonance (SR) for an overdamped bistable dynamics driven by a harmonic force and Gaussian noise from the viewpoint of the gain behavior, i.e., the signal-to-noise ratio (SNR) at the output divided by that at the input. The primary issue addressed in this work is whether a gain exceeding unity can occur for this archetypal SR model, for subthreshold signals that are bey...

متن کامل

APPROXIMATION SOLUTION OF TWO-DIMENSIONAL LINEAR STOCHASTIC FREDHOLM INTEGRAL EQUATION BY APPLYING THE HAAR WAVELET

In this paper, we introduce an efficient method based on Haar wavelet to approximate a solutionfor the two-dimensional linear stochastic Fredholm integral equation. We also give an example to demonstrate the accuracy of the method.  

متن کامل

Theory of non-Markovian stochastic resonance.

We consider a two-state model of non-Markovian stochastic resonance (SR) within the framework of the theory of renewal processes. Residence time intervals are assumed to be mutually independent and characterized by some arbitrary nonexponential residence time distributions which are modulated in time by an externally applied signal. Making use of a stochastic path integral approach we obtain ge...

متن کامل

Approximation solution of two-dimensional linear stochastic Volterra-Fredholm integral equation via two-dimensional Block-pulse ‎functions

In this paper, a numerical efficient method based on two-dimensional block-pulse functions (BPFs) is proposed to approximate a solution of the two-dimensional linear stochastic Volterra-Fredholm integral equation. Finally the accuracy of this method will be shown by an example.

متن کامل

The Response of Two-Degree of Freedom Self-Sustained Systems with Quadratic Nonlinearities to a Parametric Excitation (RESEARCH NOTE)

In this study the interaction between self-excited and paramet rically excited oscillations in two-degree-of-freedom systems with quadratic nonlinearities is investigated. The fundamental parametric resonance of the first mode and 3:1 internal resonance is considered, followed by 1:2 internal and parametric resonances of the second mode. The method of multiple time scales is applied to derive f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 67 3 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2003